Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Operationalizing Machine Learning Pipelines: Building Reusable and Reproducible Machine Learning Pipelines Using MLOps
Scaricabile subito
9,49 €
9,49 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
9,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
9,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Operationalizing Machine Learning Pipelines: Building Reusable and Reproducible Machine Learning Pipelines Using MLOps
Chiudi

Promo attive (0)

Chiudi
Operationalizing Machine Learning Pipelines: Building Reusable and Reproducible Machine Learning Pipelines Using MLOps
Chiudi

Informazioni del regalo

Descrizione


Implementing ML pipelines using MLOps KEY FEATURES ? In-depth knowledge of MLOps, including recommendations for tools and processes. ? Includes only open-source cloud-agnostic tools for demonstrating MLOps. ? Covers end-to-end examples of implementing the whole process on Google Cloud Platform. DESCRIPTION This book will provide you with an in-depth understanding of MLOps and how you can use it inside an enterprise. Each tool discussed in this book has been thoroughly examined, providing examples of how to install and use them, as well as sample data. This book will teach you about every stage of the machine learning lifecycle and how to implement them within an organisation using a machine learning framework. With GitOps, you'll learn how to automate operations and create reusable components such as feature stores for use in various contexts. You will learn to create a server-less training and deployment platform that scales automatically based on demand. You will learn about Polyaxon for machine learning model training, and KFServing, for model deployment. Additionally, you will understand how you should monitor machine learning models in production and what factors can degrade the model's performance. You can apply the knowledge gained from this book to adopt MLOps in your organisation and tailor the requirements to your specific project. As you keep an eye on the model's performance, you'll be able to train and deploy it more quickly and with greater confidence. WHAT YOU WILL LEARN ? Quick grasp of the entire machine learning lifecycle and tricks to manage all components. ? Learn to train and validate machine learning models for scalability. ? Get to know the pros of cloud computing for scaling ML operations. ? Covers aspects of ML operations, such as reproducibility and scalability, in detail. ? Get to know how to monitor machine learning models in production. ? Learn and practice automating the ML training and deployment processes. WHO THIS BOOK IS FOR This book is intended for machine learning specialists, data scientists, and data engineers who wish to improve and increase their MLOps knowledge to streamline machine learning initiatives. Readers with a working knowledge of the machine learning lifecycle would be advantageous. AUTHOR BIO Vishwajyoti is a data professional with 15 years of industry experience in data related solutions including BI, Datawarehouse, Machine Learning and Data Science. He has worked across multiple industries like Retail, Banking, Energy, IoT and Manufacturing for customers across various geographies. He has implemented enterprise level ML practice across many organizations and solved a variety of business use cases, providing positive impact to their business. Vishwajyoti also provides training and mentors professionals interested in learning and enhancing their data science skills. He has experience in languages like Python, R, SQL and multiple databases. He has also implemented solutions on different cloud vendors. He has done B. Tech from NIT Nagpur (VNIT) and MSc in Marketing Analytics from Ghent University. Shaleen is a data scientist with 4 years of professional and research experience in industry verticals such as retail, travel & hospitality, and healthcare. He has also published three research papers about music auto-tagging, and medical image segmentation in well-known journals. Shaleen has experience working with Python, C++, Javascript, and Swift as well as multiple SQL and NoSQL databases. He graduated from BITS Pilani, Dubai Campus with a B.E. in Computer Science.
Leggi di più Leggi di meno

Dettagli

2022
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9789355510310
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore