Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Elements of Deep Learning for Computer Vision: Explore Deep Neural Network Architectures, PyTorch, Object Detection Algorithms, and Computer Vision Applications for Python Coders (English Edition)
Scaricabile subito
8,49 €
8,49 €
Scaricabile subito
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
8,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
8,49 € Spedizione gratuita
scaricabile subito scaricabile subito
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Elements of Deep Learning for Computer Vision: Explore Deep Neural Network Architectures, PyTorch, Object Detection Algorithms, and Computer Vision Applications for Python Coders (English Edition)
Chiudi

Promo attive (0)

Chiudi
Elements of Deep Learning for Computer Vision: Explore Deep Neural Network Architectures, PyTorch, Object Detection Algorithms, and Computer Vision Applications for Python Coders (English Edition)
Chiudi

Informazioni del regalo

Descrizione


Conceptualizing deep learning in computer vision applications using PyTorch and Python libraries. KEY FEATURES ? Covers a variety of computer vision projects, including face recognition and object recognition such as Yolo, Faster R-CNN. ? Includes graphical representations and illustrations of neural networks and teaches how to program them. ? Includes deep learning techniques and architectures introduced by Microsoft, Google, and the University of Oxford. DESCRIPTION Elements of Deep Learning for Computer Vision gives a thorough understanding of deep learning and provides highly accurate computer vision solutions while using libraries like PyTorch. This book introduces you to Deep Learning and explains all the concepts required to understand the basic working, development, and tuning of a neural network using Pytorch. The book then addresses the field of computer vision using two libraries, including the Python wrapper/version of OpenCV and PIL. After establishing and understanding both the primary concepts, the book addresses them together by explaining Convolutional Neural Networks(CNNs). CNNs are further elaborated using top industry standards and research to explain how they provide complicated Object Detection in images and videos, while also explaining their evaluation. Towards the end, the book explains how to develop a fully functional object detection model, including its deployment over APIs. By the end of this book, you are well-equipped with the role of deep learning in the field of computer vision along with a guided process to design deep learning solutions. WHAT YOU WILL LEARN ? Get to know the mechanism of deep learning and how neural networks operate. ? Learn to develop a highly accurate neural network model. ? Access to rich Python libraries to address computer vision challenges. ? Build deep learning models using PyTorch and learn how to deploy using the API. ? Learn to develop Object Detection and Face Recognition models along with their deployment. WHO THIS BOOK IS FOR This book is for the readers who aspire to gain a strong fundamental understanding of how to infuse deep learning into computer vision and image processing applications. Readers are expected to have intermediate Python skills. No previous knowledge of PyTorch and Computer Vision is required. AUTHOR BIO Bharat Sikka is a data scientist based in Mumbai, India. Over the years, he has worked on implementing algorithms like YOLOv3/v4, Faster-RCNN, Mask-RCNN, among others. He is currently working as a data scientist at the State Bank of India. He also has a thorough knowledge and understanding of various programming languages such as Python, R, MATLAB, and Octave for Machine Learning, Deep Learning, Data Visualization and Analysis in Python, R, and Power BI, Tableau. He holds an MS degree in Data Science and Analytics from Royal Holloway, University of London, and a BTech degree in Information Technology from Symbiosis International University and has earned multiple certifications, including MOOCs in varied fields, including machine learning. He is a science fiction fanatic, loves to travel, and is a great cook.
Leggi di più Leggi di meno

Dettagli

2021
Testo in en
Tutti i dispositivi (eccetto Kindle) Scopri di più
Reflowable
9789390684687
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Compatibilità

Formato:

Gli eBook venduti da IBS.it sono in formato ePub e possono essere protetti da Adobe DRM. In caso di download di un file protetto da DRM si otterrà un file in formato .acs, (Adobe Content Server Message), che dovrà essere aperto tramite Adobe Digital Editions e autorizzato tramite un account Adobe, prima di poter essere letto su pc o trasferito su dispositivi compatibili.

Compatibilità:

Gli eBook venduti da IBS.it possono essere letti utilizzando uno qualsiasi dei seguenti dispositivi: PC, eReader, Smartphone, Tablet o con una app Kobo iOS o Android.

Cloud:

Gli eBook venduti da IBS.it sono sincronizzati automaticamente su tutti i client di lettura Kobo successivamente all’acquisto. Grazie al Cloud Kobo i progressi di lettura, le note, le evidenziazioni vengono salvati e sincronizzati automaticamente su tutti i dispositivi e le APP di lettura Kobo utilizzati per la lettura.

Clicca qui per sapere come scaricare gli ebook utilizzando un pc con sistema operativo Windows

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore