Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

The Unsupervised Learning Workshop - Aaron Jones,Christopher Kruger,Benjamin Johnston - cover
The Unsupervised Learning Workshop - Aaron Jones,Christopher Kruger,Benjamin Johnston - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
The Unsupervised Learning Workshop
Disponibilità in 2 settimane
55,50 €
55,50 €
Disp. in 2 settimane
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
55,50 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
55,50 € Spedizione gratuita
disponibilità in 2 settimane disponibilità in 2 settimane
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
The Unsupervised Learning Workshop - Aaron Jones,Christopher Kruger,Benjamin Johnston - cover

Descrizione


Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities Key Features * Get familiar with the ecosystem of unsupervised algorithms * Learn interesting methods to simplify large amounts of unorganized data * Tackle real-world challenges, such as estimating the population density of a geographical area Book Description Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner. The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding. As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area. By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights. What you will learn * Distinguish between hierarchical clustering and the k-means algorithm * Understand the process of finding clusters in data * Grasp interesting techniques to reduce the size of data * Use autoencoders to decode data * Extract text from a large collection of documents using topic modeling * Create a bag-of-words model using the CountVectorizer Who this book is for If you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.
Leggi di più Leggi di meno

Dettagli

2020
Paperback / softback
550 p.
Testo in English
235 x 191 mm
9781800200708
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore