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Preface

This is the English translation of the textbook “Introduzione all’algebra linea-
re”, originally published to cater this material to engineering and computer sci-
ence students, but later on adopted as textbook by other majors, like Genomics,
whose teaching activities are proposed entirely in English.

Though we propose the full proof of all of our statements, we introduce the
subject with a lot of examples and intuitive explanations to guide the students
through this beautiful subject.

We would like to thank the Department of Mathematics, which supported
us through these years of teaching and also our many students, who have en-
couraged us through this journey and alerted us about the typos of the previous
version: if this book is improved it is also because of their contribution.

Finally our last thank to our families, whose encouragement and support
has made this book possible.
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1 Introduction
to linear systems

We want to solve linear systems with real coefficients using a method known as
Gauss algorithm. Later on, we will also use this method to solve other problems
and, at the same time, we will interpret linear systems as special cases of a much
deeper theory.

1.1 LINEAR SYSTEMS: FIRST EXAMPLES

A linear equation is an equation where the unknowns appear with degree 1,
that is an equation of the form:

a1x1 + a2x2 + . . .+ anxn = b (1.1)

where a1, a2, . . . , an and b are assigned numbers and x1, x2, . . . , xn are the un-
knowns. The numbers a1, . . . , an are called coefficients of the linear equation,
b is called known term. If b = 0 the equation is said to be homogeneous. A
solution of the equation (1.1) is a n-tuple of numbers (s1, s2, . . . , sn), that gives
an equality when put in place of the unknowns. For example (3,−1, 4) is a
solution of the equation 2x1 +7x2 − x3 = −5 because 2 · 3+ 7 · (−1)− 4 = −5.

A linear system of m equations in n unknowns x1, x2, . . . , xn is a set of
m linear equations in n unknowns x1, x2, . . . , xn that must be simultaneously
satisfied: 8

>>><

>>>:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...
am1x1 + am2x2 + · · ·+ amnxn = bm

(1.2)

The numbers a11, . . . , a1n, . . . , am1, . . . , amn are called the system coefficients,
while b1, . . . , bm are called the known terms. If bi = 0 for every i = 1, . . . ,m,
the system is said to be homogenous. A solution of the linear system (1.2) is a
n-tuple (s1, s2, . . . , sn) of numbers that satisfies all the system equations. For
example (1, 2) is a solution of the linear system

⇢
x1 + x2 = 3
x1 − x2 = −1
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2 Chapter 1. Introduction to linear systems c� 978-88-08-92029-4

In this book we will deal exclusively with linear systems with real coefficients
that is, systems of the form (1.2) in which all the coefficients aij of the unknowns
and all known terms bi are real numbers. The solutions that we will find,
therefore, will always be ordered n-tuples of real numbers.

Given a linear system, we aim at answering the following questions:

1. Does the system admit solutions?

2. If so, how many solutions does it admit and what are they?

In certain cases it is particularly easy to answer these questions. Let us see
some examples.

Example 1.1.1

Consider the following linear system in the unknowns x1, x2:

⇢
x1 + x2 = 3
x1 + x2 = 1

It is immediate to observe that the sum of two real numbers cannot be simultaneously
equal to 3 and 1. Thus, the system does not admit solutions. In other words, when the
conditions assigned by the two equations of the system are incompatible, then the system
does not have solutions.

The example above justifies the following definition:

Definition 1.1.2 A system is said compatible if it admits solutions.

Examples 1.1.3

Consider the following linear system in the unknowns x1, x2:

⇢
x1 + x2 = 3
x2 = −1

Substituting in the first equation the value of x2 obtained from the second one, we get:
x1 = 3 − x2 = 3 + 1 = 4. The system is therefore compatible and admits a unique
solution: (4,−1). In this example two variables are assigned (the unknowns x1 and x2)
and two conditions are given (the two equations of the system). These conditions are
compatible, that is they are not contradictory, and are ”independent” meaning that they
cannot be obtained one from the other. In summary:

two real variables along with two compatible conditions give one and only one solution.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 1.1.4

Now consider the linear system in the unknowns x1, x2.

⇢
x1 + x2 = 3
2x1 + 2x2 = 6
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Unlike what happened in the previous example, here the conditions given by the two
equations are not ”independent”, in the sense that the second equation is obtained by
multiplying the first by 2. The two equations give the same relation between the variables
x1 and x2. Then, solving the linear system means simply solving the equation x1+x2 = 3.
This equation certainly has solutions: for example, we saw in the previous example that
(4,−1) is a solution, but also (1, 2) or (0, 3) are solutions. Then, exactly, how many the
solutions are there? And how can we find them out? In this case, we have two variables
and one condition on them. This means that a variable is free to vary in the set of real
numbers, which are infinitely many. The equation allows us to express a variable, say
x2, as a function of the other variable x1. The solutions are all expressible in the form:
(x1, 3− x1). With this, we mean that the variable x1 can take all the infinite real values,
and that in order for the equation x1 + x2 = 3 to be satisfied, it must be x2 = 3− x1. A
more explicit way, but obviously equivalent, to describe the solutions, is {(t, 3− t)|t 2 R}.
Of course, we could decide to vary the variable x2 and express x1 as a function of x2.
In that case we would give the solutions in the form (3− x2, x2), or equivalently we say
that the set of solutions is: {(3− s, s)|s 2 R} . In summary:

two real variables along with one condition give infinitely many solutions.

Definition 1.1.5 Two linear systems are called equivalent if they have the
same solutions.

In Example 1.1.4 we observed that the linear system

⇢
x1 + x2 = 3
2x1 + 2x2 = 6

is equivalent to the equation x1 + x2 = 3. Of course, being able to understand
if two systems are equivalent can be very useful; for example, we can try to
solve a linear system by reducing it to an equivalent one, but easier to solve.

In the next section we will introduce some useful concepts to simplify the
way we write a linear system.

1.2 MATRICES

Given two natural numbers m, n, a m ⇥ n matrix with real coefficients is a
table of mn real numbers placed on m rows and n columns. For example:

✓
5 −6 0
4 3 −1

◆

is a 2⇥ 3 matrix.
If m = n the matrix is said to be square of order n. For example

✓
1 0
2
3 3

◆

is a square matrix of order 2.
We denote by Mm,n(R) the set of m⇥ n matrices with real coefficients and

simply by Mn(R) the set of square matrices of order n with real coefficients.
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Given a matrix A, the number that appears in the i-th row and j-th column
of A is called the (i, j) entry of A.

For example in the matrix

A =

✓
5 −6 0
4 3 −1

◆

the (1, 3) entry is 0, while the (2, 2) entry is 3. Of course, two m⇥n matrices A
and B are equal if their entries coincide, that is, if the (i, j) entry of A coincides
with (i, j) entry of B, for every i = 1, . . . ,m and for every j = 1, . . . , n.

Given a generic m⇥ n matrix, we can write it synthetically as follows:

A =

0

BBB@

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

1

CCCA

where aij is the (i, j) entry, i = 1, . . . ,m, j = 1, . . . , n.
We now want to define the product rows by columns between two matrices

A and B, in the case where the rows of A have the same length as the columns
of B.

If A is a m ⇥ s matrix and B is a s ⇥ n matrix, we define the product cij
of the i-th row of A and j-th column of B in the following way:

cij =
�
ai1 ai2 . . . ais

�

0

BBB@

b1j
b2j
...

bsj

1

CCCA
= ai1b1j + ai2b2j + . . .+ aisbsj

which we also write as:

cij =

sX

h=1

aihbhj

In practice, we have multiplied, in order, the coefficients of the i-th row of A
by the coefficients of the j-th column of B, then we have added the numbers
obtained.

For example if we have

A =

0

@
1 0 3 −1
0 −2 2 1
1 0 −1 0

1

A B =

0

BB@

0 1
−3 5
1 0
2 −1

1

CCA

then
c12 = 1 · 1 + 0 · 5 + 3 · 0 + (−1) · (−1) = 2

c31 = 1 · 0 + 0 · (−3) + (−1) · 1 + 0 · 2 = −1

At this point we define the product of A and B as

C = AB = (cij)i=1,...,m
j=1,...,n

.
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The matrix C is the product of A and B and it is a m⇥ n matrix.
In the previous example we have that

C =

0

@
1 0 3 −1
0 −2 2 1
1 0 −1 0

1

A

0

BB@

0 1
−3 5
1 0
2 −1

1

CCA =

0

@
1 2
10 −11
−1 1

1

A

We note that, in general, the number of rows of AB is equal to the number of
rows of A and the number of columns of AB is equal to the number of columns
of B.

We also observe that the product of a m⇥n matrix and a n⇥1 matrix (i.e.
a vector in Rn) results in a m⇥ 1 matrix, that is, a vector in Rm.

Proposition 1.2.1 The product operation between matrices enjoys the follow-
ing properties:

1. associative, that is, (AB)C = A(BC) where A, B, C are matrices such
that the products that appear in the formula are defined;

2. distributive, that is, A(B + C) = AB + AC, provided that the sum and
product operations that appear in the formula are defined.

Proof – The proof is a calculation and amounts to applying the definition.
We show only the associativity of the product. Consider A 2 Mm,s(R), B 2
Ms,r(R), C 2 Mr,n(R). We observe that:

(AB)iu =

sX

h=1

aihbhu, (BC)hj =

rX

u=1

bhucuj

then

((AB)C)ij =

rX

u=1

(AB)iucuj =

rX

u=1

(

sX

h=1

aihbhu)cuj

=

rX

u=1

sX

h=1

aihbhucuj =

sX

h=1

rX

u=1

aihbhucuj

=

sX

h=1

aih

 
rX

u=1

bhucuj

!
=

sX

h=1

aih(BC)hj = (A(BC))ij

The proof of distributivity is similar. ⇤
Note that the product operation between matrices is not commutative. Even
if the product AB between two matrices A and B is defined, the product BA
could not be defined. For example if

A =

0

@
1 0
2 1

−1 0

1

A B =

✓
1 −1
0 1

◆
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we have that

AB =

0

@
1 −1
2 −1

−1 1

1

A

while BA is not defined. Similarly if

A =

✓
1 2
0 −3

◆
B =

✓
−1 1
0 2

◆

we have that

AB =

✓
−1 5
0 −6

◆
BA =

✓
−1 −5
0 −6

◆

1.3 MATRICES AND LINEAR SYSTEMS

Let us now see how it is possible to use matrices and the product rows by
columns to describe a linear system.

Consider a linear system of the form:

8
>>><

>>>:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

We can write this system in matrix form as follows:

0

BBB@

a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

1

CCCA
=

0

BBB@

b1
b2
...
bm

1

CCCA

and then using the product rows by columns in the following way:

0

BBB@

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

1

CCCA

0

BBB@

x1

x2

...
xn

1

CCCA
=

0

BBB@

b1
b2
...
bm

1

CCCA

or, more synthetically, as

Ax = b,

where A = (aij) is the m⇥n matrix which has as entries the coefficients of the
unknowns,

x =

0

BBB@

x1

x2

...
xn

1

CCCA
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A Solutions of some
suggested exercises

Chapter 1: Introduction to linear systems

1.6.1 a) x = y = 0, z = 1.
b) The system has no solutions.

1.6.3 The system has a unique solution for k 6= 0, 1. For k = 0, the system has
infinitely many solutions depending on one parameter, for k = 1 the system
does not have solutions.

Chapter 2: Vector Spaces

2.6.1 a), b), d), e), f), l) are subspacess. c), g), h), i), m) are not subspaces.

2.6.4 X is not a vector subspace.

Chapter 3: Linear Combinations and linear
indipendence

3.4.1 a), d), e) are linearly independent sets. b), c) are linearly dependent sets.

3.4.3 Yes.

3.4.4 k = ±
p
3.

3.4.5 k 6= −1/2.

3.4.6 k = −2/5 and k = 0.

3.4.9 a) k 6= 2,−1, b) k 6= 2.

3.4.10 a) The system has a unique solution for k 6= 0, 1, it has no solutions for
k = 0, 1. b) k 6= 0, 1.

3.4.12 The given vectors are always linearly dependent.

3.4.13 a) k 6= 0, 5/3. For k = 0 we have v2 = v3.

3.4.14 a) k 6= 0,−2. b) k 6= 0,−2.
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