Indice generale

Prefazione, xI
Struttura dell'opera, XIII
Risorse didattiche, XV

Indice analitico, 247
Fonti delle illustrazioni, 255

Parte 1 Scienza e tecnologia nel contesto sociale

Concezioni della scienza, 3

Processi e contesti, 3; Le relazioni tra scienza e tecnologia, 5; Idea di progresso, 5; L'etica nella ricerca scientifica, 6; Comunicazione e divulgazione della conoscenza scientifica, 6

RIQUADRO 1.1

La scienza nelle definizioni dei grandi pensatori, 4

Molteplicità degli approcci, 9

Le unità di studio, 9

La natura delle scienze biologiche, 9

I processi dell'indagine biologica, 9; I modelli scientifici, 11; Le narrazioni storiche, 12; Un filo conduttore, 13

SAGGIO 2.1

La specializzazione nella conoscenza scientifica, 10

La storia della biologia: un'intricata rete di domande e risposte, 13

La diversità e la classificazione, 14; Gli indizi della vita: i fossili, 15; Due viaggi che hanno cambiato il corso del pensiero scientifico, 17; Dopo Darwin, 18

La biologia oggi, 18

Parte 2 L'unità della vita

BIOLOGIA NEL CONTESTO SOCIALE

Vita "sintetica", 20

Tutta la materia dell'universo ha un'origine comune, 21

Si forma la Terra, 22

Comincia la vita, 22

Dall'evoluzione chimica all'evoluzione prebiologica, 25; Le prime cellule: alcune evidenze, 26; Solo sulla Terra c'è vita?, 27

RIQUADRO 3.1

La ricerca della vita nell'Universo, 27

Diverse strategie energetiche: eterotrofi e autotrofi, 29

Due tipi di cellule: procariotiche ed eucariotiche, 30

L'origine delle cellule eucariotiche, 31; Le origini della pluricellularità, 32

Che cos'è la vita?, 33

Gli esseri viventi, sistemi complessi e aperti, 33; Gli organismi viventi si riproducono, 35; Gli organismi viventi: un'organizzazione gerarchica, 35; Unità e diversità, 37

RIQUADRO 3.2

Alla ricerca dell'antenato comune, 34

SAGGIO 3.1

La nascita della teoria cellulare, 37

SAGGIO 3.2

Il problema della generazione spontanea, 38

SAGGIO 3.3

Né macchine né forza vitale: semplicemente esseri viventi, 39

IL DIBATTITO ATTUALE

Un "disegno intelligente"?, 40

RIPRENDIAMO I PROBLEMI INIZIALI

Vita "sintetica", 40

SPUNTI DI LAVORO, 41

BIOLOGIA NEL CONTESTO SOCIALE

Strumenti, idee scientifiche e contesti nella costruzione della teoria cellulare, 42

La dimensione, la forma e l'organizzazione delle cellule, 43

La cellula analizzata come sistema aperto, 45

I confini della cellula, 46

Le membrane cellulari: strutture dinamiche e fluide, 47; Un ambiente speciale per le cellule: la matrice extracellulare, 50; La parete cellulare esterna alla membrana: una caratteristica delle cellule vegetali, 51

RIQUADRO 4.1

Viaggio nel mondo cellulare: come possiamo studiare le cellule?, 47

Il trasporto di sostanze attraverso la membrana plasmatica, 52

Il modello a mosaico fluido e la permeabilità della membrana, 52; Trasporto passivo e attivo, 53; Scambi per mezzo di vescicole, 56

RIQUADRO 4.2

La tonicità della cellula, 55

All'interno della cellula: il nucleo, 57

Caratteristiche del nucleo, 59

Tra il nucleo e la membrana plasmatica: il citoplasma, 60

Le strutture sulle quali si sintetizzano le proteine: i ribosomi, 62; I sistemi di endomembrane, 62; Altri tipi di organuli, 67; Un sistema di sostegno interno: il citoscheletro, 68

RIQUADRO 4.3

Separare le strutture della cellula, 61

RIQUADRO 4.4

Un'introduzione alla sintesi delle proteine, 64

RIQUADRO 4.5

Colture cellulari, 73

RIPRENDIAMO I PROBLEMI INIZIALI

Strumenti, idee scientifiche e contesti nella costruzione della teoria cellulare, 73

SPUNTI DI LAVORO, 74

BIOLOGIA NEL CONTESTO SOCIALE

Il DNA "sulla bocca di tutti", 75

La ripartizione dell'informazione genetica, 76

La vita di una cellula: il ciclo cellulare, 77

La regolazione del ciclo cellulare, 78

SAGGIO 5.1

Il cancro: cellule fuori controllo, 79

La divisione del nucleo e del citoplasma: mitosi e citodieresi. 81

La divisione del citoplasma, 82; La formazione e l'assemblaggio del fuso mitotico, 82

Divisione cellulare e riproduzione, 83

Il processo di morte cellulare: confronto tra apoptosi e necrosi, 83

II DNA: struttura e duplicazione, 84

Un po' di storia: DNA o proteine?, 84; Gli esperimenti con i batteri e il "fattore trasformante", 85; Gli esperimenti con i batteriofagi: la rivincita del DNA, 86

Il modello di Watson e Crick, 88

La duplicazione del DNA, 92; Il meccanismo generale della duplicazione del DNA, 92; Correzione degli errori, 97; La DNA polimerasi come strumento della moltiplicazione: PCR, 97

RIQUADRO 5.1

II DNA come portatore dell'informazione genetica, 89

SAGGIO 5.2

Chi avrebbe potuto scoprire il DNA?, 89

SAGGIO 5.3

Dietro ogni grande scoperta... Rosalind Franklin e la struttura del DNA, 90

IL DIBATTITO ATTUALE

Genetica e discriminazione, 98

RIPRENDIAMO I PROBLEMI INIZIALI

II DNA "sulla bocca di tutti", 100

SPUNTI DI LAVORO, 100

BIOLOGIA NEL CONTESTO SOCIALE

Le mandorle in amore e guerra, 101

Forme di energia e trasformazioni energetiche, 102 Principio di conservazione dell'energia: prima legge della termodinamica, 103

La prima legge della termodinamica e gli organismi viventi, 104

Direzione dei processi naturali: seconda legge della termodinamica. 104

L'entropia e la "freccia del tempo", 106

Metabolismo: vie in rete, 106

Reazioni spontanee e non spontanee negli organismi viventi, 108

I componenti della cellula attori delle trasformazioni energetiche, 108

Gli enzimi e l'energia di attivazione, 109; Cofattori e coenzimi nell'azione enzimatica, 111; Vie enzimatiche, 111; Regolazione dell'attività enzimatica, 112; ATP: la moneta energetica della cellula, 114

RIQUADRO 6.1

La liberazione di energia e le reazioni di ossidoriduzione, 112

La glicolisi e la respirazione cellulare: le principali vie metaboliche, 114

Panoramica sull'ossidazione del glucosio, 115

Prima fase: la glicolisi in 10 tappe, 116

Seconda fase: la respirazione aerobica, 118

La tappa intermedia: l'ossidazione del piruvato, 118

I passaggi del ciclo di Krebs, 118

La fase finale: il trasporto di elettroni, 119

La catena respiratoria, 120; Il meccanismo della fosforilazione ossidativa: l'accoppiamento chemiosmotico, 120

Rendimento energetico dell'ossidazione del glucosio, 121

In assenza di ossigeno: la fermentazione, 121

Altre vie cataboliche, 123

Vie anaboliche, 123

RIPRENDIAMO I PROBLEMI INIZIALI

Le mandorle in amore e guerra, 124

SPUNTI DI LAVORO, 124

BIOLOGIA NEL CONTESTO SOCIALE

Energia e consumo, 125

Introduzione alla fotosintesi: le due fasi, 126

I cloroplasti: gli organuli chiave della fotosintesi, 127

L'assorbimento della luce: i pigmenti antenna, 129

SAGGIO 7.1

La scoperta della fotosintesi, 128

SAGGIO 7.2

La distinzione delle due fasi della fotosintesi, 130

RIQUADRO 7.1

La natura della luce, 132

Le reazioni dipendenti dalla luce: il trasporto di elettroni, 133

Flusso non ciclico di elettroni, 134; Flusso ciclico di elettroni, 135

RIQUADRO 7.2

Fotosistemi e biocombustibili, 135

Le reazioni che fissano il carbonio, 135

Il ciclo C3 o ciclo di Calvin, 136; La fotorespirazione, riduzione dell'efficienza fotosintetica, 136; Le piante C4: la via dei quattro atomi di carbonio, 138; Le piante CAM. 139

Impiego dei prodotti della fotosintesi, 140

Il bilancio tra fotosintesi e respirazione, 140

RIPRENDIAMO I PROBLEMI INIZIALI

Energia e consumo, 141

SPUNTI DI LAVORO, 141

SCIENZA, TECNOLOGIA E SOCIETÀ

Impatto delle nuove tecnologie nella coevoluzione della Terra con i viventi: una questione di scala, 143

Parte 3 Le basi e i meccanismi dell'ereditarietà

BIOLOGIA NEL CONTESTO SOCIALE

Che cosa studiava Mendel nel giardino dell'abbazia?, 146

La riproduzione sessuata, 147

Le cellule aploidi, diploidi e poliploidi hanno un diverso corredo cromosomico, 147; La meiosi: il dimezzamento del numero di cromosomi, 148; Le otto fasi della meiosi, 150; La segregazione casuale dei cromosomi, 150

Mitosi e meiosi sono processi analoghi ma differenti, 151

La meiosi in organismi con cicli vitali diversi, 151

Errori possibili durante la meiosi, 153

Le conseguenze della riproduzione sessuata, 154

Tre fonti di variabilità genetica, 154

Gli esperimenti di Mendel e la nascita della genetica, 155

RIQUADRO 8.1

Gemelli monozigotici, 155

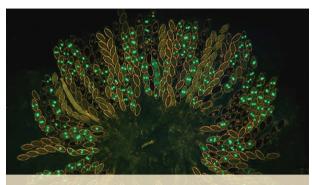
SAGGIO 8.1

Ipotesi intorno all'ereditarietà, 157

Il metodo sperimentale di Mendel, 157

Primi risultati: il principio della segregazione dei caratteri, 159; Nuovi esperimenti: la legge dell'assortimento indipendente, 162

I geni e i cromosomi, 164


Le leggi di Mendel e la dinamica della meiosi, 164; La determinazione cromosomica del sesso, 166; I caratteri legati al sesso, 167; L'associazione tra geni diversi e la ricombinazione, 167

Ampliando il concetto di gene, 168

Le interazioni tra alleli diversi, 169; Le azioni dei vari geni: l'ereditarietà poligenica, 170; L'interazione tra i geni e l'ambiente, 171

RIPRENDIAMO I PROBLEMI INIZIALI

Che cosa studiava Mendel nel giardino dell'abbazia?, 171 **SPUNTI DI LAVORO**, 172

Capitolo 9

Il codice genetico e la sintesi delle proteine

BIOLOGIA NEL CONTESTO SOCIALE

Le metafore e il linguaggio della genetica, 173

L'evoluzione del concetto di gene, 174

SAGGIO 9.1 RNA, il messaggero sfuggente, 175

Il flusso di informazioni all'interno della cellula, 176

Il codice genetico, 177

L'universalità del codice genetico, 179

La trascrizione: dal DNA all'RNA, 179

Il meccanismo di trascrizione: la sintesi dell'RNA messaggero, 179; L'elaborazione dell'RNA messaggero, 180

La traduzione: dall'RNA al polipeptide, 181

L'RNA ribosomiale e i ribosomi, 181; L'RNA di trasporto: una molecola fra l'mRNA e gli amminoacidi, 181; Il processo di sintesi dei polipeptidi, 183

Una ridefinizione delle mutazioni, 185

Una revisione del concetto di gene, 187

IL DIBATTITO ATTUALE

La diversità del concetto di gene, 187

RIPRENDIAMO I PROBLEMI INIZIALI

Le metafore e il linguaggio della genetica, 188

SPUNTI DI LAVORO, 189

BIOLOGIA NEL CONTESTO SOCIALE

Il momento giusto perché cambino le idee, 190

I virus, parassiti intracellulari, 191

L'infezione virale, 191; Evoluzione dei virus, 192

Il genoma dei procarioti e la sua regolazione, 192

Regolazione dell'espressione genica nei procarioti, 193

SAGGIO 10.1

Virus emergenti, 194

Il genoma eucariotico, 195

Quantità di DNA, 195; Geni interrotti da introni, 195; Elevata proporzione di DNA intergenico, 195; Sequenze ripetute, 196; Struttura cromosomica: un'intima associazione tra DNA e proteine, 196; Il genoma eucariotico: un'organizzazione complessa, 199

RIQUADRO 10.1

Genomi: geni e regioni intergeniche, 197

La regolazione dell'espressione genica negli eucarioti, 199

L'espressione genica negli animali: transgeni e cloni, 201

RIQUADRO 10.2

Microchip a DNA, 203

RIPRENDIAMO I PROBLEMI INIZIALI

Il momento giusto perché cambino le idee, 203

SPUNTI DI LAVORO, 204

BIOLOGIA NEL CONTESTO SOCIALE

Esperimento con patate geneticamente modificate, 205

Le tecnologie del DNA ricombinante, 206

Gli strumenti dell'ingegneria genetica, 206

Una varietà di enzimi, 206; Le materie prime, 209; Amplificazione del DNA, 209; Cellule ospiti, 209; Vettori per il trasporto di sequenze di DNA, 209

RIQUADRO 11.1

Biotecnologie, ieri e oggi, 207

RIQUADRO 11.2

Gli enzimi di restrizione, 208

Le tecniche di manipolazione del DNA, 210

Localizzazione di frammenti specifici di DNA: l'ibridazione, 210; Il sequenziamento del DNA, 212; La reazione a catena della polimerasi (PCR), 215; Il clonaggio molecolare, 215

RIQUADRO 11.3

Tecnica per l'identificazione di persone, 216

Le tecniche e gli strumenti in azione, 216

Le genoteche, 216

Le applicazioni delle biotecnologie, 217

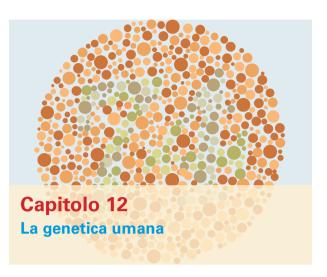
La creazione di proteine ricombinanti, 217; Microrganismi ricombinanti, 218; Animali transgenici, 218; Silenziamento del materiale genetico, 218; Le piante transgeniche, 219; Il sequenziamento di interi genomi, 221

SAGGIO 11.1

Il brevetto dei geni, 221

RIQUADRO 11.4

Il quadro normativo dell'ingegneria genetica, 222


IL DIBATTITO ATTUALE

Organismi geneticamente modificati, 222

RIPRENDIAMO I PROBLEMI INIZIALI

Esperimento con patate geneticamente modificate, 224

SPUNTI DI LAVORO, 224

BIOLOGIA NEL CONTESTO SOCIALE

Tu che cosa risponderesti?, 225

Le alterazioni genetiche, 226

Alterazioni cromosomiche, 227; Malattie monogeniche, 230; Malattie multifattoriali, 232

SAGGIO 12.1

Cambiamenti di prospettiva sulla sindrome di Down, 229

SAGGIO 12.2

Lo sviluppo tumorale e gli strumenti terapeutici della medicina moderna, 234

La diagnosi delle malattie genetiche, 235

La diagnosi mediante tecniche di analisi del DNA, 235; La diagnosi prenatale, 237; La consulenza genetica, 238

Il trattamento delle malattie genetiche, 238

La terapia genica, 238; Le controversie sulla terapia genica, 239

Il progetto genoma umano, 239

La salute nella dimensione collettiva, 240

IL DIBATTITO ATTUALE

La genetica medica e i suoi problemi, 240

RIPRENDIAMO I PROBLEMI INIZIALI

Tu che cosa risponderesti?, 241

SPUNTI DI LAVORO, 241

SCIENZA, TECNOLOGIA E SOCIETÀ

Risorse e limiti degli studi sul DNA, 243