Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Introduction to Machine Learning - Ethem Alpaydin - cover
Introduction to Machine Learning - Ethem Alpaydin - cover
Dati e Statistiche
Wishlist Salvato in 2 liste dei desideri
Introduction to Machine Learning
Attualmente non disponibile
66,39 €
66,39 €
Attualmente non disp.
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
66,39 € Spedizione gratuita
attualmente non disponibile attualmente non disponibile
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
66,39 € Spedizione gratuita
attualmente non disponibile attualmente non disponibile
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Introduction to Machine Learning - Ethem Alpaydin - cover

Descrizione


A substantially revised third edition of a comprehensive textbook that covers a broad range of topics not often included in introductory texts. The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing. Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.
Leggi di più Leggi di meno

Dettagli

Adaptive Computation and Machine Learning series
2014
Hardback
640 p.
Testo in English
229 x 203 mm
9780262028189
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore