Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Bayesian Modeling of Spatio-Temporal Data with R - Sujit Sahu - cover
Bayesian Modeling of Spatio-Temporal Data with R - Sujit Sahu - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Bayesian Modeling of Spatio-Temporal Data with R
Disponibilità in 5 giorni lavorativi
53,43 €
-5% 56,24 €
53,43 € 56,24 € -5%
Disp. in 5 gg lavorativi
Chiudi
Altri venditori
Prezzo e spese di spedizione
ibs
53,43 € Spedizione gratuita
disponibilità in 5 giorni lavorativi disponibilità in 5 giorni lavorativi
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
ibs
53,43 € Spedizione gratuita
disponibilità in 5 giorni lavorativi disponibilità in 5 giorni lavorativi
Info
Nuovo
Altri venditori
Prezzo e spese di spedizione
Chiudi

Tutti i formati ed edizioni

Chiudi
Bayesian Modeling of Spatio-Temporal Data with R - Sujit Sahu - cover

Descrizione


Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.
Leggi di più Leggi di meno

Dettagli

Chapman & Hall/CRC Interdisciplinary Statistics
2024
Paperback / softback
434 p.
Testo in English
234 x 156 mm
800 gr.
9781032209579
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore